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Abstract. Geological formations are ubiquitously heterogeneous, and the equations that govern
flow and transport in such formations can be treated as stochastic partial differential equations.
The Monte Carlo method is a straightforward approach for simulating flow in heterogeneous porous
media; an alternative based on the moment-equation approach has been developed in the last two
decades to reduce the high computational expense required by the Monte Carlo method. However,
the computational cost of the moment-equation approach is still high. For example, to solve head
covariance up to first order in terms of σ2

Y , the variance of log hydraulic conductivity Y = lnKs, it
is required to solve sets of linear algebraic equations with N unknowns for 2N times (N being the
number of grid nodes). The cost is even higher if higher-order approximations are needed. Zhang
and Lu [J. Comput. Phys., 194 (2004), pp. 773–794] developed a new approach to evaluate high-order
moments (fourth order for mean head in terms of σY , and third order for head variances in terms of
σ2
Y ) of flow quantities based on the combination of Karhunen–Loève decomposition and perturbation

methods. In this study, we systematically investigate the computational efficiency and solution
accuracy of three approaches: Monte Carlo simulations, the conventional moment-equation (CME)
approach, and the moment-equation approach based on Karhunen–Loève decomposition (KLME).
It is evident that the computational cost for the KLME approach is significantly lower than those
required by the Monte Carlo and CME approaches. More importantly, while the computational
costs (in terms of the number of times for solving linear algebraic equations with N unknowns)
for the CME approach depend on the number of grid nodes, the cost for the KLME approach is
independent of the number of grid nodes. This makes it possible to apply the KLME method to
solve more realistic large-scale flow problems.
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1. Introduction. Owing to heterogeneity of geological formations and incom-
plete knowledge of medium properties, the medium properties are treated as random
space functions and the equations describing flow and transport in these formations
become stochastic. Stochastic approaches to flow and transport in heterogeneous
porous media have been extensively studied in the past two decades, and many
stochastic models have been developed [7, 9, 4, 35].

Monte Carlo simulation is a conceptually straightforward method for solving these
stochastic partial differential equations. It entails generating a large number of equally
likely random realizations of the parameter fields, solving deterministic flow and trans-
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port equations for each realization, and averaging the results over all realizations to
obtain sample statistical moments of the solution. This approach has the advantage
of applying to a broad range of both linear and nonlinear flow and transport problems.
However, it also has a number of potential drawbacks [30, 17]. A major disadvantage
of the Monte Carlo method, among others, is the requirement for large computa-
tional efforts. To properly resolve high-frequency space-time fluctuations in random
parameters, it is necessary to employ fine numerical grids in space-time. Therefore,
computational efforts for each realization are usually large. To ensure the convergence
of the sample moments to their theoretical ensemble values, a large number of real-
izations are often required (typically a few thousand realizations, depending on the
degree of medium heterogeneity), which poses a significant computational burden.

An alternative to Monte Carlo simulations is an approach based on moment equa-
tions, the essence of which is to derive a system of deterministic partial differential
equations governing the statistical moments of the flow and transport quantities (usu-
ally the first two moments, mean and covariance) and then solve them analytically or
numerically [5, 6, 7, 10, 32, 33, 16, 26, 28, 25, 38, 8, 21, 20, 19, 34, 35, 17].

The moment equations are usually derived with the method of perturbation.
In the perturbation-based approach, the medium properties, such as log hydraulic
conductivity Y , can be written as Y = 〈Y 〉+Y ′, and similarly the predicted quantity,
such as hydraulic head h, can be decomposed as h = 〈h〉 + h′. After substituting
these decompositions into the original stochastic equations with some mathematical
manipulation, one obtains equations for mean head and head perturbation. The mean
equation cannot be solved directly because it contains some cross-covariance functions
between head and medium properties such as CY h(x,y) = 〈Y ′(x)h′(y)〉. The equation
for 〈Y ′h′〉 in turn will involve some third-order terms. One can write either an implicit
equation for the head perturbation or equivalently express it explicitly as integrals
whose integrands contain Green’s functions and other higher-order cross-covariance
terms [35]. The head covariance equation is then formulated from the equation for
head perturbation. Either way, these exact formulations cannot be solved without
some closure approximations.

Alternatively, one can expand the hydraulic head as an infinite series in terms of
the standard deviation of the medium property. More specifically, for saturated flow as
considered in this study, head is expanded as an infinite series h =

∑∞
n=0 h

(n) in terms
of σY , the standard deviation of the log hydraulic conductivity. Substituting the de-
composition into the original equations yields a series of recursive equations in which
the equation for h(n) involves lower-order terms h(i), i = 1, 2, . . . , n− 1. In most ex-
isting models, the mean head is approximated up to second order in σY , and the head
(co)variance is approximated to first order in σ2

Y , i.e., Ch(x,y) = 〈h(1)(x)h(1)(y)〉.
In computing the head covariance to first order in σ2

Y , one needs to solve determinis-
tic equations that are similar to the original equation about 2N times (N being the
number of grid nodes): N times for solving CYh and about N times for Ch. Including
higher-order terms is possible, but it will increase computational efforts drastically.
Though in many cases this approach works quite well for relatively large variations
in the medium properties [30, 39, 35, 18, 24], it is in general restricted to small vari-
abilities of medium properties.

The application of Karhunen–Loève (KL) decomposition for solving stochastic
boundary value problems has been pioneered by Ghanem and his coauthors [29, 11,
12, 13, 14, 15]. The essence of this technique includes discretizing the independent
random process (e.g., log hydraulic conductivity) using the KL expansion and rep-
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resenting the dependent stochastic process (hydraulic head or concentration) using
the polynomial chaos basis. The deterministic coefficients of the dependent process
in the polynomial chaos expansion are then calculated via a weighted residual pro-
cedure. Roy and Grilli [27] combined the KL decomposition and the perturbation
methods to solve the steady state flow equation and obtained the mean head to first
order in σY and the head variance to first order in σ2

Y . Zhang and Lu [37] evaluated
higher-order approximations for the means and (co)variances of head on the basis
of KL decomposition. Specifically, with the combination of KL decomposition and
perturbation methods, they evaluated the mean head up to fourth order in σY and
the head variances up to third order in σ2

Y . They also explored the validity of this
approach for different degrees of medium variability and various correlation scales
through comparisons with Monte Carlo simulations.

In this study, we compare systematically the computational cost and solution
accuracy of Monte Carlo simulations, the conventional moment-equation (CME) ap-
proach, and the moment-equation approach based on the KL decomposition (KLME).

2. Stochastic differential equations. We consider transient water flow in sat-
urated media satisfying the following continuity equation and Darcy’s law [2],

Ss
∂h(x, t)

∂t
+ ∇ · q(x, t) = g(x, t),(2.1)

q(x, t) = −Ks(x)∇h(x, t),(2.2)

subject to initial and boundary conditions

h(x, 0) = H0(x), x ∈ D,(2.3)

h(x, t) = H(x, t), x ∈ ΓD,(2.4)

q(x, t) · n(x) = Q(x, t), x ∈ ΓN ,(2.5)

where q is the flux, h(x, t) is hydraulic head, H0(x) is the initial head in the domain
D, H(x, t) is the prescribed head on Dirichlet boundary segments ΓD, Ks(x) is satu-
rated hydraulic conductivity, Q(x, t) is the prescribed flux across Neumann boundary
segments ΓN , n(x) = (n1, . . . , nd)

T is an outward unit vector normal to the boundary
Γ = ΓD ∪ ΓN , and Ss is the specific storage.

For simplicity, in this study, we assume that porosity φ, specific storage Ss, and all
boundary and initial conditions are deterministic, while Ks(x) is treated as a random
function and thus (2.1)–(2.5) become stochastic partial differential equations, whose
solutions are no longer deterministic values but probability distributions or related
statistical moments.

3. Methodology

3.1. Monte Carlo simulations. Monte Carlo simulation is one of the few
methods for solving stochastic partial differential equations and perhaps is the most
straightforward method in practice. This widely used approach is conceptually simple
and is based on the idea of approximating a stochastic process by a large number of
equally probable realizations.

The principle behind the Monte Carlo method is statistical sampling, which in-
volves three major components. The first one is to generate multiple realizations of
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the stochastic process of interest, say, hydraulic conductivity, on the basis of the given
statistical moments and distributions of the process. There exist a number of meth-
ods for generating such realizations (see, for example, [22] for an assessment of some
of the methods). It is important to make sure that the generated realizations of the
hydraulic conductivity field honor the given statistical moments such as the mean,
variance, and covariance. Plots of the local sample statistics at some representative
points versus the number of realizations may be used to examine the convergence
of the generated random fields. In the case that measurements are available, real-
izations may be conditioned at these points, i.e., honoring the measured values at
these points.

The second step is to solve, for each realization, the governing equations (2.1)–
(2.5) by numerical methods such as finite differences and finite elements. Note that the
spatial discretization (∆) used in the numerical methods should be inversely related to
the level of spatial variability, e.g., the standard deviation of log hydraulic conductivity
σ

Y
. Ababou et al. [1] suggested the following relationship between η/∆ (the number

of cells within each integral scale η) and σ
Y
: η/∆ � 1+σ

Y
. Several studies indicated

that at least five cells within each integral scale should be used in order to minimize the
filtering (local averaging) effect of spatial discretization [1, 31]. Since a larger number
of cells may be required to resolve the more rapidly varying hydraulic conductivity
field as σ

Y
increases, the maximum level of spatial variability that the Monte Carlo

method could handle is limited, in practice, by the available computer power and by
the ability of numerical simulators to resolve high variabilities.

The third component of the Monte Carlo method is to average over the solutions of
many realizations to obtain the statistical moments or distributions of the dependent
variables. Once the realizations are solved, the resulting solutions of flow quantities
such as hydraulic head and flux can be averaged over all realizations to obtain sta-
tistical moments or distributions of these flow quantities. To check convergence, one
may plot the local hydraulic head moments at some representative locations versus
the number of Monte Carlo simulations M to identify the minimum number of realiza-
tions needed to achieve convergence in the statistical moments of the hydraulic head
field. The number of simulations needed could be different for different dependent
variables.

The Monte Carlo approach can handle complex geometry and boundary condi-
tions and requires fewer assumptions than does the moment equation approach. Most
importantly, the Monte Carlo approach can, in principle, deal with extremely large
variability in independent variables so long as the number of realizations is large.
However, this requires considerable computation and a careful examination of the
results.

3.2. CME approach. The moment-equation approach is one of the alternatives
for solving flow in heterogeneous porous media and has received great attention in
the past two decades. The basic idea of this approach is to derive, from the orig-
inal stochastic equations, a set of deterministic equations that govern the first two
moments (mean and covariance) of the flow quantities.

First-order moment equations for flow in randomly heterogeneous porous me-
dia have been developed, for example, by Zhang and Lu [36]. However, for com-
pleteness, in this section we briefly outline the procedure. Though the moment-
equation approach is free of assumption on parameter distributions, for the sake of
comparisons with the Monte Carlo method, we assume that the hydraulic conductivity
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Ks(x) follows a log normal distribution and work with the log-transformed variable
Y (x) = ln(K(x)) = 〈Y (x)〉 + Y ′(x). The mean log saturated hydraulic conductivity
〈Y (x)〉 represents a relatively smooth unbiased estimate of the unknown random func-
tion Y (x). It may be estimated using standard geostatistical methods, such as kriging,
which produce unbiased estimates that honor measurements and provide uncertainty
measures for these estimates. Here we assume that the log saturated hydraulic con-
ductivity field may be conditioned at some measurement points, which means that the
field may be statistically inhomogeneous. The two-point covariance function CY (x,y)
depends on the actual locations of two points x and y rather than their separation
distance, and therefore the eigenvalues and eigenfunctions of CY (x,y), in general,
have to be solved numerically.

Because the variability of dependent variable h(x, t) is a function of the input
variability, i.e., the variability of Y (x), one may formally write h(x, t) as an infinite
series as h(x, t) = h(0) + h(1) + h(2) + · · · . We also expand Ks(x) = exp[Y (x)] =
exp[〈Y (x)〉 + Y ′(x)] = KG(x)[1 + Y ′ + (Y ′)2/2 + · · · ], where KG(x) is the geometric
mean of Y (x). In these series, the order of each term is with respect to σY , the
standard deviation of Y (x). After combining (2.1) and (2.2), substituting expansions
of h(x, t) and Ks(x), and collecting terms at separate order, we obtain

∇2h(0)(x, t) + ∇〈Y (x)〉 · ∇h(0)(x, t) +
g(x, t)

KG(x)
=

Ss

KG(x)

∂h(0)(x, t)

∂t
,(3.1)

h(0)(x, 0) = H0(x), x ∈ Ω,(3.2)

h(0)(x, t) = H(x, t), x ∈ ΓD,(3.3)

ni(x)
∂h(0)(x, t)

∂xi
= −Q(x, t)/KG(x), x ∈ ΓN ,(3.4)

where summation over the repeated index i is implied and for m ≥ 1

∇2h(m)(x, t) + ∇〈Y (x)〉 · ∇h(m)(x, t)

=
Ss

KG(x)

m∑
k=0

(−1)k

m!
× [Y ′(x)]k

∂h(m−k)(x, t)

∂t
−∇Y ′(x)(3.5)

·∇h(m−1)(x, t) − g(x, t)

m! KG(x)
[−Y ′(x)]m,

h(m)(x, 0) = 0, x ∈ D,(3.6)

h(m)(x, t) = 0, x ∈ ΓD,(3.7)

∇h(m)(x, t) · n(x) = − Q(x, t)

m! KG(x)
[−Y ′(x)]m, x ∈ ΓN .(3.8)

Equations (3.1)–(3.4) are the governing equations for the first-order (or zeroth-order)
mean head. It can be shown that 〈h(0)(x, t)〉 ≡ h(0)(x, t) and 〈h(1)(x, t)〉 ≡ 0; thus the
mean head solution up to zeroth order or first order is h(0)(x, t). The second-order
correction term h(2) can be solved by taking the mean of (3.5)–(3.8) with m = 2.
The second-order mean head is h[2] = h(0) + h(2). The first-order (in terms of σ2

Y )
head covariance can be derived from (3.5)–(3.8) by setting m = 1, multiplying the
derived equation for h(1)(x, t) by h(1)(χ, τ) at a different space-time location, taking
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the ensemble mean, and using (3.1) and (3.4),

∂2Ch(x, t; χ, τ)

∂x2
i

+
∂〈Y (x)〉

∂xi

∂Ch(x, t; χ, τ)

∂xi

=
Ss

KG(x)

∂Ch(x, t; χ, τ)

∂t
− ∂h(0)(x, t)

∂xi

∂CY h(x; χ, τ)

∂xi
(3.9)

−CY h(x; χ, τ)

[
∂2h(0)(x, t)

∂x2
i

+
∂〈Y (x)〉

∂xi

∂h(0)(x, t)

∂xi

]
,

Ch(x, 0; χ, τ) = 0, x ∈ Ω,(3.10)

Ch(x, t; χ, τ) = 0, x ∈ ΓD,(3.11)

ni(x)

[
∂Ch(x, t; χ, τ)

∂xi
+ CY h(x; χ, τ)

∂h(0)(x, t)

∂xi

]
= 0, x ∈ ΓN ,(3.12)

where summation over the repeated index i is implied. CYh(x; χ, τ) can be obtained
similarly by writing (3.5)–(3.8) of m = 1 in terms of (χ, τ), multiplying Y (x) to the
derived equation for h(1)(χ, τ), and taking the ensemble mean.

We may also formally write the flux q(x, t) as q(x, t) = q(0) + q(1) + q(2) + · · · .
Then the first two moments of the flux are [35, 36]

q(0)(x, t) = −KG(x)∇h(0)(x, t),(3.13)

q(2)(x, t) = −KG(x)

[
Y ′(x)∇h(1)(x, t) +

1

2
Y ′2(x)∇h(0)(x, t) + ∇h(2)(x, t)

]
,(3.14)

Cq(x, t; χ, τ)

= KG(x)KG(χ)
[
CY (x; χ)∇xh

(0)(x, t)∇χh(0)(χ, τ)
(3.15)

+∇xh
(0)(x, t)∇T

χCY h(x; χ, τ)

+∇xCY h(χ;x, t)∇T
χh(0)(χ, τ) + ∇x∇T

χCh(x, t; χ, τ)
]
.

The mean flux is q(0)(x, t) to zeroth order or first order. The second-order correc-
tion term 〈q(2)(x, t)〉 can be derived by taking the ensemble mean of (3.14). The
velocity covariance can be derived through Cv(x, t; χ, τ) = Cq(x, t; χ, τ)/[φ(x)φ(χ)]
upon assuming deterministic porosity φ. Here both Cq and Cv are tensors (usually
asymmetric).

3.3. Moment-equation approach based on KL decomposition

3.3.1. KL decomposition of log hydraulic conductivity. Let Y (x, ω) =
ln[Ks(x, ω)] be a random process, where x ∈ D and ω ∈ Ω (a probability space). Be-
cause the covariance function CY (x,y) = 〈Y ′(x, ω)Y ′(y, ω)〉 is bounded, symmetric,
and positive definite, it can be decomposed into [3]

CY (x,y) =

∞∑
n=1

λnfn(x)fn(y),(3.16)

where λn and fn(x) are called eigenvalues and eigenfunctions, respectively. Here λn’s
form a nonincreasing series and fn(x) are orthogonal and deterministic functions that
form a complete set [23]∫

D

fn(x)fm(x)dx = δnm, n,m ≥ 1.(3.17)



564 ZHIMING LU AND DONGXIAO ZHANG

The mean-removed stochastic process Y ′(x, ω) can be expanded in terms of fn(x) as

Y ′(x, ω) =

∞∑
n=1

ξn(ω)
√

λnfn(x),(3.18)

where ξn(ω) are orthogonal standard Gaussian random variables, i.e., 〈ξn(ω)〉 = 0,
and 〈ξn(ω)ξm(ω)〉 = δnm. The expansion in (3.18) is called the KL expansion. It
can be verified that the covariance of Y ′(x, ω) defined in (3.18) is indeed CY . For
convenience, hereafter, we suppress the symbol ω in Y ′(x, ω) and in other dependent
functions.

Eigenvalues and eigenfunctions of a covariance function CY (x,y) can be solved
from the following Fredholm equation:∫

D

CY (x,y)f(x)dx = λf(y).(3.19)

For some special types of covariance functions, such as one-dimensional stochastic pro-
cesses with an exponential covariance function CY (x1, x2) = σ2

Y exp(−|x1 − x2|/η),
where σ2

Y and η are the variance and the correlation length of the process, respectively,
eigenvalues and eigenfunctions can be derived analytically. For cases of two- (or three-)
dimensional flows in rectangular (or brick-shaped) domains with a separable exponen-
tial covariance function, such as CY (x,y) = σ2

Y exp(−|x1 − y1|/η1 − |x2 − y2|/η2) for
a two-dimensional domain D = {(x1, x2) : 0 ≤ x1 ≤ L1, 0 ≤ x2 ≤ L2}, (3.19) can be

solved independently for x1 and x2 directions to obtain eigenvalues λ
(1)
n and λ

(2)
n and

eigenfunctions f
(1)
n (x1) and f

(2)
n (x2). These eigenvalues and eigenfunctions are then

combined to form eigenvalues and eigenfunctions of CY [27, 37].
Equation (3.18) provides a way for generating random fields. Once eigenvalues λn

and their corresponding eigenfunctions fn are found, a realization can be computed
simply by independently sampling a certain number of values zn from the standard
Gaussian distribution N(0, 1) and then computing

∑N
n=1 zn

√
λnfn(x), where N is the

number of terms needed to generate realizations with a given accuracy. The number
N depends on the ratio of the correlation length to the domain size. Truncating
the infinite series in (3.18) by a finite number of terms, we in fact ignore small scale
variability of log hydraulic conductivity.

Since eigenvalues
√
λn and their eigenfunctions fn(x) always come together, in

the following derivation, we define new functions f̃n(x) =
√
λnfn(x), and the tilde

over fn is dropped for simplicity.

3.3.2. Moment equations for head. As was done for the CME approach
presented in section 3.2, we expand h(x, t) and Ks(x) into an infinite series and
derive equations governing h(m)(x, t), m ≥ 1, i.e., (3.1)–(3.8). We further assume that
h(m)(x, t) can be expanded in terms of those orthogonal Gaussian random variables
ξn, n = 1, 2, . . . , which are used in expanding Y ′(x) [37],

h(m)(x, t) =

∞∑
i1,i2,...,im=1

⎛
⎝ m∏

j=1

ξij

⎞
⎠h

(m)
i1,i2,...,im

(x, t),(3.20)

where h
(m)
i1,i2,...,im

(x, t) are deterministic functions to be determined. Substituting de-

composition of Y ′(x), i.e., (3.18), and recursively h(m)(x, t) into (3.5)–(3.8), we obtain

governing equations for h
(m)
i1,i2,...,im

(x, t). For example, to determine h
(1)
n (x, t), one
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substitutes the expansion of Y ′(x) and h(1)(x, t) =
∑∞

n=1 ξn h
(1)
n (x, t) into equations

(3.5)–(3.8) with m = 1 and obtains

∞∑
n=1

ξn

[
∇2h(1)

n (x, t) + ∇〈Y (x)〉 · ∇h(1)
n (x, t)

− Ss

KG(x)

(
∂h

(1)
n (x, t)

∂t
− fn(x)

∂h(0)(x, t)

∂t

)
(3.21)

+∇fn(x) · ∇h(0)(x) − g(x, t)

KG(x)
fn(x)

]
= 0.

Because of the orthogonality of set {ξn}, all coefficients of the infinite series on the
left-hand side of (3.21) have to be zero, which can also be seen by multiplying ξk
on (3.21) and taking the ensemble mean. This leads to equations with initial and

boundary conditions for h
(1)
n (x, t):

∇2h(1)
n (x, t) + ∇〈Y (x)〉 · ∇h(1)

n (x, t)

=
Ss

KG(x)

[
∂h

(1)
n (x, t)

∂t
− fn(x)

∂h(0)(x, t)

∂t

]
(3.22)

−∇fn(x) · ∇h(0)(x) +
g(x, t)

KG(x)
fn(x),

h(1)
n (x, 0) = 0, x ∈ D,(3.23)

h(1)
n (x, t) = 0, x ∈ ΓD,(3.24)

∇h(1)
n (x, t) · n(x) =

Q(x, t)

KG(x)
fn(x), x ∈ ΓN .(3.25)

Recalling the definition of fn(x), it is seen that all driving terms in (3.22)–(3.25) are
proportional to

√
λn, which decreases as n increases. This ensures that the magnitude

of contribution of h
(1)
n (x, t) to h(1)(x, t) decreases with n in general. This also clearly

indicates that h
(1)
n (x, t) are proportional to σY , the standard deviation of log hydraulic

conductivity. Derivation of higher-order terms h
(m)
i1,i2,...,im

(x, t) can be found in [37].
It is important to mention here that the second-order polynomial chaos expansions

of Ghanem and Spanos [11], {ξiξj − δij , i, j = 1, 2, . . . }, are orthogonal and may
be used as a basis to expand h(2)(x, t). However, because 〈ξiξj − δij〉 ≡ 0, the

expansion h(2)(x, t) =
∑∞

i,j=1(ξiξj − δij)h
(2)
ij (x, t) results in 〈h(2)(x, t)〉 ≡ 0. On

the other hand, if we take the ensemble mean of (3.5)–(3.8) with m = 2, we have
in general 〈h(2)(x, t)〉 �= 0 unless the medium is homogeneous, which means that the
latter expansion does not satisfy (3.5)–(3.8) of m = 2 for flow in heterogeneous media.

We solve h
(m)
i1,i2,...,im

(x, t) up to fifth order, i.e., m = 5. Once we solved h(0)(x, t),

h
(1)
n (x, t), h

(2)
ij (x, t), h

(3)
ijk(x, t), h

(4)
ijkl(x, t), and h

(5)
ijklm(x, t), we can directly compute

the mean head and the head covariance without solving equations for Ch(x, t; χ, τ) and
CYh(x; χ, τ), both of which are required in the CME approach. Up to fifth order in
σY , the head is approximated by

h(x, t) ≈
5∑

i=0

h(i)(x, t),(3.26)
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which leads to an expression for the mean head

〈h(x, t)〉 ≈
5∑

i=0

〈h(i)(x, t)〉 = h(0)(x, t) +

∞∑
i=1

h
(2)
ii (x, t) + 3

∞∑
i,j=1

h
(4)
iijj(x, t).(3.27)

The first term on the right-hand side of (3.27) is the zeroth-order (or first-order)
approximation of the mean head: 〈h(0)(x, t)〉 ≡ h(0)(x, t). The second term represents
the second-order (or third-order) correction to the first-order mean head, and the third
term is the fourth-order (or fifth-order) correction. From (3.26) and (3.27), one can
write the perturbation term up to fifth order,

h′(x, t) = h(x, t) − 〈h(x, t)〉 ≈
5∑

i=1

h(i)(x, t) − 〈h(2)(x, t)〉 − 〈h(4)(x, t)〉,(3.28)

where 〈h(2)〉 = 〈
∑∞

i,j=1 ξiξjh
(2)
ij 〉 =

∑∞
i=1 h

(2)
ii and 〈h(4)〉 = 3

∑∞
i,j=1 h

(4)
iijj .

Equation (3.28) leads to the head covariance

Ch(x, t;y, τ)

=

∞∑
i=1

h
(1)
i (x, t)h

(1)
i (y, τ) + 2

∞∑
i,j=1

h
(2)
ij (x, t)h

(2)
ij (y, τ)

+ 3

∞∑
i,j=1

h
(1)
i (x, t)h

(3)
ijj(y, τ) + 3

∞∑
i,j=1

h
(1)
i (y, τ)h

(3)
ijj(x, t)

+

∞∑
i,j,k,l,m,n=1

〈ξijklmn〉
[
h

(1)
i (x, t)h

(5)
jklmn(y, τ) + h

(2)
ij (x, t)h

(4)
klmn(y, τ)(3.29)

+h
(3)
ijk(x, t)h

(3)
lmn(y, τ) + h

(4)
ijkl(x, t)h

(2)
mn(y, τ)

+h
(5)
ijklm(x, t)h(1)

n (y, τ)
]

−〈h(2)(x, t)〉〈h(4)(y, τ)〉 − 〈h(4)(x, t)〉〈h(2)(y, τ)〉,
where ξijklmn = ξiξjξkξlξmξn for convenience. Because {ξn, n = 1, 2, . . . } is a set
of independent Gaussian random variables, the 〈ξi ξj ξk ξl ξm ξn〉 term can be easily
evaluated by counting the occurrence of each ξ and using relationships 〈ξ2k+1

i 〉 = 0
and 〈ξ2k

i 〉 = (2k − 1)!!. For instance, 〈ξ1 ξ2
2 ξ

3
3〉 = 〈ξ1〉〈ξ2

2〉〈ξ3
3〉 = 0 and 〈ξ2

1 ξ
4
2〉 =

〈ξ2
1〉〈ξ4

2〉 = 1!! · 3!! = 3. The head variance up to third order in σ2
Y (or sixth order in

σY ) can be derived from (3.29) as

(3.30)

σ2
h(x, t) =

∞∑
i=1

[h
(1)
i (x, t)]2 + 2

∞∑
i,j=1

[h
(2)
ij (x, t)]2 + 6

∞∑
i,j=1

h
(1)
i (x, t)h

(3)
ijj(x, t)

+

∞∑
i,j,k,l,m,n=1

〈ξijklmn〉
[
2h

(1)
i (x, t)h

(5)
jklmn(x, t) + 2h

(2)
ij (x, t)h

(4)
klmn(x, t)

+h
(3)
ijk(x, t)h

(3)
lmn(x, t)

]
− 2〈h(2)(x, t)〉〈h(4)(x, t)〉.

Here the first term on the right-hand side of (3.30) represents the head variance up
to first order in σ2

Y , the second and third terms are second-order (in σ2
Y ) corrections,

and the remaining terms are the third-order (in σ2
Y ) corrections.
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3.3.3. Flux moments. Once we have solved for the head terms, the flux mo-
ments can be derived from (2.2). Similarly, the mean flux up to fifth order can be
written as

〈q(x, t)〉 ≈
5∑

i=0

〈q(i)(x, t)〉 = q(0)(x, t) +

∞∑
i=1

q
(2)
ii (x, t) + 3

∞∑
i,j=1

q
(4)
iijj(x, t),(3.31)

where q
(n)
i1,i2,...,in

, analogous to h
(n)
i1,i2,...,in

, are coefficients of expansions for q(n). The

flux covariance up to third order in σ2
Y is given as

Cq,rs(x, t;y, τ) = 〈q′r(x, t) q′s(y, τ)〉

=

∞∑
i=1

q
(1)
i,r (x, t) q

(1)
i,s (y, τ) + 2

∞∑
i,j=1

q
(2)
ij,r(x, t) q

(2)
ij,s(y, τ)

+ 3

∞∑
i,j=1

q
(1)
i,r (x, t)q

(3)
ijj,s(y, τ) + 3

∞∑
i,j=1

q
(1)
i,s (y, τ)q

(3)
ijj,r(x, t)

+

∞∑
i,j,k,l,m,n=1

〈ξijklmn〉
[
q
(1)
i,r (x, t)q

(5)
jklmn,s(y, τ) + q

(2)
ij,r(x, t)q

(4)
klmn,s(y, τ)(3.32)

+ q
(3)
ijk,r(x, t)q

(3)
lmn,s(y, τ)

+ q
(4)
ijkl,r(x, t)q

(2)
mn,s(y, τ)q

(5)
ijklm,r(x, t)q

(1)
n,s(y, τ)

]
−〈q(2)

r (x, t)〉〈q(4)
s (y, τ)〉 − 〈q(4)

r (x, t)〉〈q(2)
s (y, τ)〉, r, s = 1, 2, . . . , d,

where subscripts r and s represent the terms corresponding to the rth and sth com-
ponents of the flux field. Equation (3.32) leads to the flux variance up to third order
in σ2

Y :

σ2
q,s(x, t)

=

∞∑
i=1

[q
(1)
i,s (x, t)]2 + 2

∞∑
i,j=1

[q
(2)
ij,s(x, t)]

2 + 6

∞∑
i,j=1

q
(1)
i,s (x, t)q

(3)
ijj,s(x, t)

+

∞∑
i,j,k,l,m,n=1

〈ξijklmn〉
[
2q

(1)
i,s (x, t)q

(5)
jklmn,s(x, t) + 2q

(2)
ij,s(x, t)q

(4)
klmn,s(x, t)(3.33)

+ q
(3)
ijk,s(x, t)q

(3)
lmn,s(x, t)

]
− 2〈q(2)

s (x, t)〉〈q(4)
s (x, t)〉, s = 1, 2, . . . , d.

4. Accuracy of solutions. In general, there are two types of errors associated
with Monte Carlo simulation results: numerical and statistical. The former depends
on the numerical method and the particular solver used as well as the spatial and
temporal discretizations. The larger the spatial variability, the finer the required spa-
tial discretization will be. The statistical errors involved in Monte Carlo simulations
stem from approximating the stochastic process of interest with a finite number of
realizations. To reduce this type of error, one may need to conduct a large number
of simulations. The actual number of required simulations depends on the spatial
variability of the process. Here in the example shown in section 6, the numerical grid
used in Monte Carlo simulations is sufficiently fine to reduce the effect of numerical
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discretizations, and a considerably large number of realizations are used to reduce the
statistical errors. The results from Monte Carlo simulations are then considered as
the “true” solutions for the flow problem, and results from both the CME and KLME
approaches are compared with those from Monte Carlo simulations to validate these
moment-equation approaches.

On the other hand, the conventional moment equations are derived under the
assumption of small perturbations or with some kinds of closure approximations,
either of which may introduce error. Compared to the Monte Carlo method, the
moment-equation approach has some important distinctions. For example, the co-
efficients of the moment equations are relatively smooth because they are ensemble
quantities. Thus the moment equations can be solved on relatively coarse grids. How-
ever, it should be noted that the equation for the head covariance is related to the
cross-covariance CYh(x;y, τ), which in turn involves the derivative of the covariance
function CY (x,y). Therefore, the numerical grid for the moment-equation approach
should be fine enough to more accurately approximate the derivative of CY (x;y) over
the space, which implies that the ratio of the correlation length to the grid size should
be at least two.

Because the KL-based approach involves the derivative of eigenfunctions over
space, it suffers from a restriction on the grid resolution similar to that for the CME
approach. However, the accuracy of the KL-based approach has been evident from our
previous work [37]. Zhang and Lu [37] investigated the effect of spatial variability of
log hydraulic conductivity on solution accuracy for four different degrees of variability,
σ2
Y = 0.25, 1.0, 2.0, and 4.0, for saturated flow in a rectangular domain with con-

stant heads at both the upstream and downstream boundaries and no-flow at lateral
boundaries. As expected, when σ2

Y is small, head variances obtained from different
approaches do not have significant differences. As σ2

Y increases, the first-order (in σ2
Y )

head variance from the CME approach is the same as the first-order solution from
the KLME approach for all four cases examined, simply implying that the number
of terms (n1 = 100) included in h(1) are adequate to approximate h(1). Comparing
this to the first-order CME approach, with the increase of σ2

Y , the advantage of the
KLME approach is obvious. At σ2

Y = 1.0, the estimation error of head variance (at
the center of the domain where head variance reaches its maximum) introduced by the
first-order CME approach (and also the first-order KLME approach) is 17.3%, while
the estimation error is 3.4% for the second-order solution of the KLME approach and
1.1% for the third-order solution of the KLME approach. At σ2

Y = 2.0, the estimation
error of head variance for the first-order solutions is 33.6%, while they are 14.4% and
6.6%, respectively, for the second- and third-order solutions of the KLME approach.

When the porous media are strongly heterogeneous (σ2
Y = 4.0), although higher-

order corrections of the KLME approach make some improvement on estimating the
head variance over the first-order solution of the CME approach, they still deviate
greatly from the Monte Carlo results. It is possible for such highly heterogeneous
porous media that even higher-order terms may be needed. Another choice is to
incorporate measurements on hydraulic conductivity and/or head so that the spatial
variability of log hydraulic conductivity can be reduced.

In summary, for weakly heterogeneous porous media, results from both the first-
order CME and first-order KLME are close to those from Monte Carlo simulations.
For moderately heterogeneous porous media, such as σ2

Y = 2.0, results from the
first-order CME deviate significantly from Monte Carlo results, while higher-order
approximations from the KLME approach move closer to Monte Carlo results. For
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strongly heterogeneous porous media, results from the KLME approach up to third
order (in terms of σ2

Y ) are still different from Monte Carlo results.

5. Computational efficiency of solution techniques. All three formulations
discussed in this paper can be solved numerically by finite element or finite difference
methods, both of which will end up with a set of algebraic equations with N unknowns
(N being the number of nodes in the numerical grid, which could be different for
different methods) in a form of Ax = b. Two different measures have been used
in comparison with computational efficiency among different methods. When we
compare the computational cost required for the conventional moment method and
the KL-based moment method, for simplicity, the cost is in terms of the number
of times to solve sets of linear algebraic equations, because both methods yield the
same matrix A. When we compare the efficiency between Monte Carlo simulations
and moment approaches, the number of floating point multiplications is used as the
measure, because the Monte Carlo method requires a finer numerical grid.

5.1. CME vs. the Monte Carlo method. As mentioned in the introduction,
for the CME approach, to obtain the head covariance up to first order in σ2

Y , one needs
to solve both the cross-covariance CYh(x;y, τ) and head covariance Ch(x, t;y, τ). At
each time, the computational cost for both is NCME (NCME being the number of nodes
required in the CME approach which could be different from the number of nodes
required in Monte Carlo simulations). Therefore, the total cost for the first-order
head covariance will be 2NCME . Even if we are interested in the head uncertainty
only at some particular locations, i.e., Ch(x, t;y, τ) for some y, we still need to solve
CYh(x;y, τ) for all x ∈ D, whose cost is NCME .

Detailed comparison of computational efficiency of the first-order CME approach
and the Monte Carlo method can be given in terms of the number of multiplications
involved in each method. Assume the LU decomposition algorithm is used to solve
linear algebraic equations, which requires N3/3 multiplications for each equation set
with N unknowns. Since each correlation length should have at least five grid lines
in the Monte Carlo method and two grid lines in the CME approach, it is reasonable
to assume that the relationship NCME = (2/5)dNMC holds, where d is dimensionality
of the simulation domain. For a two-dimensional problem, the number of multiplica-
tions required for first-order CME will be MCME = (2NCME)N3

CME/3 = 2N4
CME/3 =

2[(2/5)2NMC ]4/3 = (1.3 × 10−3 × NMC)N3
MC/3, compared to the number needed by

the Monte Carlo method, MMC = M × N3
MC/3, where M is the number of Monte

Carlo simulations required to obtain a convergent solution. In this discussion, the
fact is not utilized that at each time step the matrix A has to be decomposed only
once in the CME method. For a small- or median-size domain, say, several to tens of
thousands of nodes in the grid for Monte Carlo simulations, in general the number of
realizations M needed to assure convergence of Monte Carlo simulations may be at
the order of thousands, which is much larger than 1.3 × 10−3 ×NMC . This indicates
that for such a situation the moment approach is computationally more efficient than
the Monte Carlo approach. For a large-size domain, say, millions of nodes in the grid
of Monte Carlo simulations, if the variability of porous media is relatively low, the
number of Monte Carlo simulations M may be at the order of thousands or less, and
the Monte Carlo method can be more efficient than the first-order CME approach,
because M could be less than 1.3 × 10−3 ×NMC . On the basis of this discussion, by
assuming M = 1000 the approximate crossover is on the order of one million nodes for
the LU decomposition algorithm. For highly heterogeneous porous media, however, a
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considerable number of realizations may be needed and the Monte Carlo method may
be less efficient than the first-order CME method. Note that for such a situation the
accuracy of the first-order CME approach may be low.

Similarly, for three-dimensional flow problems, one has MCME = (3.36 × 10−5 ×
NMC)N3

MC/3. Therefore, even for large-scale simulations, say, millions of nodes in
the grid of Monte Carlo simulations, in general the number of required realizations
M ≥ 3.36× 10−5 ×NMC , which means that the CME approach may be more efficient
than the Monte Carlo approach. We have to emphasize here that the CME approach
may require substantial computer memory (in two or three dimensions). For example,
for a case with NMC = 106, NCME = (2/5)3 × NMC = 64,000, one needs to store the
cross-covariance CYh, which is a full matrix of 64,000 × 64,000.

If instead of LU decomposition some other numerical algorithms, such as multi-
grid algorithms, which need only O(N) operations, are used in solving sets of linear
algebraic equations, our discussion above is still valid. For multigrid algorithm in
two-dimensional flow problems, the number of flow point multiplications for the CME
method is MCME = 2N2

CME = 2[(2/5)2NMC ]2 = (0.0512NMC) × NMC . Again, for a
small-size domain with several thousands of grid nodes (NMC ∼ 1000), the CME
method could be more efficient than the Monte Carlo method. For a large domain
(say NMC ∼ 106), the Monte Carlo method could be more efficient that the CME
method, depending on the variability of porous media. For the multigrid method, the
crossover is on the order of ten thousands of grid nodes if we assume M = 1000.

Note that in the above discussion, we compared computational efficiency of Monte
Carlo method only with the first-order CME method. If we want to find higher-
order corrections, which is definitely needed for highly heterogeneous porous media,
the computational burden increases drastically. For instance, to obtain the head
variance up to second order in σ2

Y , one may need to solve equations for terms such
as 〈Y ′(x)Y ′(y)h′(z, t)〉 with a cost of N2

CME for each t, which is computationally very
demanding for a relatively large simulation domain. In this case, the CME approach
is not a good choice. In terms of computational costs, there is a crossover in the
number of grid nodes, less than which the CME method is more efficient than the
Monte Carlo method. However, the exact crossover is highly dependent on the choice
of solver and the level of variability.

5.2. KLME vs. CME. In the KL-based perturbation approach, instead of solv-

ing the covariance equations we solve for the head terms h
(m)
i1,i2,...,im

, which are given
by linear algebraic equations with N unknowns. Once with the head terms, the first
two moments of head and flux can be obtained with simple algebraic operations. Be-

cause the structure of the head term equations, such as (3.22)–(3.25) for h
(1)
i , is the

same as that of the moment equations Ch(x, t; χ, τ), i.e., (3.9), the computational

efforts for solving h
(m)
i1,i2,...,im

on a grid of N nodes is more or less the same as that
for Ch(x, t; χ, τ) for each reference point (χ, τ), or CYh(x; χ, τ), for all x ∈ D. In
addition, as discussed previously, coefficients in equations for both CME and KLME
approaches are relatively smooth, and both suffer from a similar restriction on nu-
merical grid resolution because some coefficients are related to derivatives of func-
tions. For these reasons, we can assume that the number of grid nodes for the CME
and KLME approaches can be the same. Hence, the effectiveness of the KL-based
approach largely depends on the number of times required to solve these linear al-

gebraic equations. Due to symmetry, to obtain h
(m)
ii,i2,...im

, where ij = 1, n, the cost
(in terms of the number of times needed to solve linear algebraic equation with N
unknowns) is Sm = n(n + 1) · · · (n + m − 1)/m!. In the example shown in the next
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section the indices for h
(1)
i , h

(2)
ij , h

(3)
ijk, h

(4)
ijkl, and h

(5)
ijklm are 100, 20, 10, 10, and 5,

respectively, i.e., index i in h
(1)
i running up to 100 and each index in h

(2)
ij running

up to 20, and so on. For instance, (3.22)–(3.25) need to be solved for 100 times, and

similar equations for h
(2)
ij need to be solved 210 times. The total number of times

needed to solve similar equations to obtain h
(1)
i , h

(2)
ij , h

(3)
ijk, h

(4)
ijkl, and h

(5)
ijklm will be

100 + 210 + 220 + 715 + 75 = 1320, which is less than the number of times needed
for solving the CYh(x,y) and Ch(x,y) covariance equations (2NCME = 3362, in this
case) in the first-order CME approach. Note that if we are interested only in the
first-order results, the cost (in terms of the number of times to solve linear equation
sets with N unknowns) for the KLME approach is at the order of hundreds, compared
to a few thousands for the CME approach. The total cost for solving higher-order
approximations in the KLME approach is still much less than that required for the
first-order CME approach. More importantly, the number of times needed to solve
linear algebraic equations for the KLME approach is independent of the number of
grid nodes. This makes it possible to apply the KLME approach to simulate flow and
transport in more realistic large-scale problems.

The computational efforts of the KL-based approach can be reduced significantly
if we take advantage of the orthogonal Gaussian random variables {ξn}. For example,
in computing second moment terms (e.g., head variance and flux variance) up to

third order in σ2
Y , terms h

(5)
jklmn and h

(1)
i always appear together as the coefficient

of term 〈ξiξjξkξlξmξn〉. As a result, if the set of indices {jklmn} has more than

one odd number of occurrences, the term h
(5)
jklmn does not need to be solved because

〈ξiξjξkξlξmξn〉 ≡ 0. For instance, the term h
(5)
1,3,4,4,5 can be skipped because the set

{1, 3, 4, 4, 5} has three indices that have odd numbers of occurrences. The contribution

of h
(5)
1,3,4,4,5 to head variance and flux variance must be zero because 〈ξiξ1ξ3ξ2

4ξ5〉 ≡ 0,
no matter what the index i is.

It has been shown [37] that for a small correlation length of log hydraulic conduc-
tivity, more terms are required to approximate Y (x) in (3.18), and thus more terms
are needed in expansions of h(m), which increases the computational cost of this ap-
proach. However, Zhang and Lu [37] also showed that, in the case of small correlation
lengths, first-order solutions are very close to Monte Carlo results and higher-order
corrections may not be needed.

5.3. KLME vs. the Monte Carlo method. Compared to the Monte Carlo
method, the KLME approach solves sets of linear algebraic equations with fewer
unknowns (i.e., on a coarser grid) for a smaller number of times. In addition, the
coefficient matrix A for the KLME approach is always the same for all those equations

for h
(m)
ii,i2,...,im

.
Ghanem [14] compared the Monte Carlo method and his KL-based stochastic

finite element method and concluded that the former is a special case of the latter.
More specifically, in his formulation, if the polynomial chaos basis in the expansion
of the dependent variable is replaced by delta functions, one recovers the traditional
Monte Carlo averaging. Ghanem [14] also discussed qualitatively the computational
efficiency of Monte Carlo simulations and his approach. While the Monte Carlo
method requires us to solve sets of linear algebraic equations with NMC unknowns
independently for M times, their approach requires us to solve a set of linear algebraic
equations with N × P , where P is the number of terms in the polynomial expansion
and N is the number of nodes in the numerical grid which could be smaller than NMC .
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We have to emphasize a few major differences between our KLME approach and
that developed by Ghanem and his coauthors on computational efficiency. While
the equations for coefficients in their polynomial decomposition are fully coupled
(i.e., solving linear algebraic equations N × P unknowns), in our algorithm, sets of
linear algebraic equations with N unknowns are solved recursively from lower order
to higher order. In addition, the number of terms in the polynomial decomposition
is determined in advance in their method, while in our method, more terms can be
added sequentially, if needed.

6. Illustrative examples. In this section, we give an example to illustrate
how the KLME approach can significantly reduce computational efforts in computing
higher-order approximations of head (and flux) for flow in a hypothetical saturated
porous medium, by comparing model results with those from Monte Carlo simulations
and the CME.

We consider a two-dimensional domain in a saturated heterogeneous porous me-
dium. As shown in Figure 6.1, the flow domain is a square of size L1 = L2 = 10 [L]
(where L is any consistent length unit), uniformly discretized into 40 × 40 square
elements. The no-flow conditions are prescribed at two lateral boundaries. The
hydraulic head is prescribed at the left and right boundaries as 10.5 [L] and 10.0 [L],
respectively, which produces a mean background flow from the left to the right. Two
wells are located at (3.0 [L], 3.0 [L]) and (7.0 [L], 7.0 [L]) with strengths of −1.0 [L/T ]
and 1.0 [L/T ], respectively. A negative strength represents extraction of fluid out of
the domain. The statistics of the log hydraulic conductivity are given as 〈Y 〉 = 0.0
(i.e., the geometric mean saturated hydraulic conductivity KG = 1.0 [L/T ], where T
is any consistent time unit), σ2

Y = 1.0, and the correlation length η = 4.0. We will
compare results from different approaches along the profile AA′ which passes both
wells, as indicated in Figure 6.1.

For simplicity, it is assumed in the example that the log saturated hydraulic
conductivity Y (x) = lnKs(x) is second-order stationary with a separable exponential
covariance function

CY (x,y) = CY (x1, x2; y1, y2) = σ2
Y exp

[
−|x1 − y1|

η
− |x2 − y2|

η

]
,(6.1)

where η is the correlation scale. In this case, eigenvalues λn, n = 1, 2, . . . , and their
corresponding eigenfunctions fn, n = 1, 2, . . . , can be determined analytically [37].

The number of terms included in approximating h
(m)
i1,i2,...,im

are 100, 20, 10, 10,
and 5 for m = 1, 2, 3, 4, and 5, respectively. It should be noted that, for the purpose
of comparison, we have included large numbers of terms in these approximations.
The actual numbers of terms in these approximations to achieve reasonably accurate
results could be much less.

For the purpose of comparison, we conducted Monte Carlo simulations. We use
5000 two-dimensional unconditional realizations generated on the grid of 41×41 nodes
with the separable covariance function given in (6.1), based on (3.18) with 200 terms.
The quality of these realizations is examined by comparing their sample statistics
(mean, variance, and correlation length) of these realizations with the specified mean
and covariance functions. The comparisons show that the generated random fields
reproduce the specified mean and covariance functions very well. The steady state,
saturated flow equation is solved for each realization of the log hydraulic conductivity,
using finite-element heat- and mass-transfer code (FEHM) developed by Zyvoloski
et al. [40]. Then, the sample statistics of the flow fields, i.e., the mean predictions
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Fig. 6.1. Boundary configuration for the
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Fig. 6.2. Mean flow field from Monte
Carlo simulations.

of head and flux as well as their associated uncertainties (variances), are computed
from realizations. These statistics are considered the “true” solutions that are used
to compare solution accuracy of the CME approach and the higher-order KLME
approach. Figure 6.2 shows the mean flow field computed from the Monte Carlo
simulations.

We also compared the results from the KLME approach against those from the
first-order CME approach, i.e., the mean head and mean flux up to second order in
terms of σY , and head (and flux) variance up to first order in terms of σ2

Y . The zeroth-
order mean head is solved from (3.1)–(3.4), the second-order correction of mean head
from the ensemble mean of (3.5)–(3.8) with m = 2, and the first-order head variance
from solving (3.9)–(3.12). It is expected that, while the higher-order approximations
of head variance and flux variance from the KLME approach should be close to Monte
Carlo results, their first-order approximations shall be almost identical to those from
the CME approach if n1, the number of terms included in h(1), is sufficiently large.
That is to say, the closeness between the first-order variances derived from the CME
approach and that from the KLME approach is an indicator showing whether n1 is
large enough.

Due to the particular boundary configuration in our example, the mean head
derived from different approaches does not differ significantly. To illustrate their
differences more clearly, we plot the detrended mean head rather than the mean
head itself. Figure 6.3(a) compares the detrended mean head obtained from Monte
Carlo simulations, the zeroth-order and second-order approximations of the CME
approach, and zeroth-order, second-order, and fourth-order approximations from the
KLME approach along the cross section AA′. It is seen that the zeroth-order solution
of mean head from the CME and KLME approaches are identical, and both deviate
slightly from Monte Carlo results at or near the well locations, while the second-order
approximation of mean head from both CME and KLME approaches are very close
to Monte Carlo results. The contribution of fourth-order correction to mean head is
very small. Figure 6.3(b) depicts the comparison of head variance derived from Monte
Carlo simulations, the first-order approximations of the CME approach, and first-,
second-, and third-order approximations of the KLME approach. Although the first-
order approximations of the head variance from both CME and KLME approaches
show a pattern similar to that of the Monte Carlo results, the discrepancies are very
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Fig. 6.3. Comparison of (a) detrended mean head and (b) head variance derived from Monte
Carlo, CME, and KLME approaches with different orders of approximations along the cross section
AA′.
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Fig. 6.4. Comparison of (a) mean longitudinal flux, (b) mean transverse flux, (c) variance
of longitudinal flux, and (d) variance of transverse derived from Monte Carlo, CME, and KLME
approaches with different orders of approximations along the cross section AA′.

large in well locations. By including second- and third-order corrections computed
from the KLME approach, the results are getting close to Monte Carlo results.

Comparisons for mean flux and flux variance obtained from different approaches
are illustrated in Figure 6.4. The figure shows that, for the mean flux, second-order
approximations (from both CME and KLME) are accurate enough and the fourth-
order contribution is very small (Figure 6.4(a)–(b)). However, flux variances computed
from different approaches differ significantly for various orders of approximations.
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It is seen from Figure 6.4(c)–(d) that the first-order (in terms of σ2
Y ) approx-

imations of flux variances (both longitudinal and transverse) from the CME and
the KLME approaches are very close, but they deviate significantly from the Monte
Carlo results. This indicates that higher-order corrections are required to accurately
approximate flux variance, and that the CME approach is not capable of fulfilling
this requirement. Including the second- and third-order corrections using the KLME
approach significantly improves simulation results, while the computational cost is
still less than that of the CME approach up to first order.

7. Summary and conclusions. In this study, we compared solution accuracy
and computational cost for the widely used Monte Carlo method and the CME ap-
proach, as well as the newly developed moment-equation approach [37] based on
Karhunen–Loève decomposition, for saturated flow in randomly heterogeneous porous
media. The moment-equation approach based on Karhunen–Loève decomposition
(KLME) allows us to evaluate the mean head (flux) to fourth order in σY and the
head (flux) covariance up to third order in σ2

Y . We demonstrated the KLME approach
with an example of steady state saturated flow in a two-dimensional rectangular do-
main and compared our results with those from Monte Carlo simulations and from
the first-order CME-based approach.

In terms of computational efficiency, the KL-based moment method is always
better than both the conventional moment method and the Monte Carlo method.
Regarding the computational efficiency of the Monte Carlo method and the CME
approach, there is a crossover in the number of grid nodes, less than which the latter
method is more efficient than the former. However, the exact crossover is highly
dependent on the choice of solver and the level of variability. In general, for a small- or
median-size domain, say, thousands of nodes in the grid for Monte Carlo simulations,
the conventional moment approach is computationally more efficient than the Monte
Carlo approach. For a large-size domain, say, millions of nodes in the grid of Monte
Carlo simulations, if the variability of porous media is relatively low, the Monte Carlo
method is more efficient than the first-order CME approach. However, for relatively
highly heterogeneous porous media, a considerable number of realizations may be
needed and the Monte Carlo method may be less efficient than the first-order CME
method. For strongly heterogeneous porous media, the first-order CME method is
not enough and including higher-order terms in the CME method will be infeasible
because it requires one to solve sets of linear algebraic equations with NCME unknowns
at least N2

CME times.
The accuracy of the two moment approaches discussed in this paper depends on

the degree of heterogeneity of porous media. For weakly heterogeneous porous media,
the Monte Carlo method, and both the first-order CME and the KLME approaches
yield similar results, which means that first-order approximations are sufficiently ac-
curate for this case. However, the KLME approach needs only a fraction of the
computation efforts required by the Monte Carlo approach and the first-order CME
approach. For moderately heterogeneous porous media, such as σ2

Y = 2, results from
the CME approach, especially the head (and flux) covariance, deviate from Monte
Carlo results. In this case, higher-order corrections are needed. Including higher-order
corrections using the KLME approach significantly improves simulation results. For
highly heterogeneous porous media, compared to the first-order approximations, al-
though including higher-order terms does improve the results, discrepancies still exist.

Note that if we are interested only in the first-order results, the computational
costs (in terms of the number of times to solve linear algebraic equations with N
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unknowns) for the KLME approach is at the order of hundreds, compared to a
few thousands for the CME approach (when the number of nodes is a couple thou-
sand). The total cost for solving higher-order approximations in the KLME approach
is still much less than that required for the first-order CME approach. More im-
portantly, the number of times to solve linear algebraic equations for the KLME
approach is independent of the number of grid nodes. This makes it possible to
apply the KLME approach to simulate flow and transport in more realistic large-scale
problems.
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